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Abstract

Let i be a real measure on the line such that its Poisson integral M(z) converges and
satisfies

[M(x+iy)| <A™, y— + o,
for some constants 4, ¢>0 and 0 <a<1. We show that for 1 /2 <o <1 the measure u must have
many sign changes on both positive and negative rays. For 0 <o <1/2 this is true for at least
one of the rays, and not always true for both rays. Asymptotical bounds for the number of

sign changes are given which are sharp in some sense.
© 2003 Elsevier Inc. All rights reserved.

MSC: 30D99; 42A38

Keywords: Sign changes; Poisson integral; Oscillations

1. Introduction

Let f be a real-valued function from L, (R) and let

L[r @ .
F(Z):E/;w m, Z:X+ly€C\R,
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be its Poisson integral. Shapiro [7] asks how many sign changes a real even function f'
must have if its Poisson integral satisfies

F(iy) = 0(e™"), y— + oo, (1)

for some ¢>0 and 0<a<1. As shown in [6, Theorem L] and [5, Theorem 7.6.3], for
o = 1 and an even function f condition (1) is equivalent to

|F(z)|<Ae P z=x+iyeC\R, (2)

where A>0 is independent of x and y. Condition (2) is of interest because [5,
Theorem 7.6.3] it is equivalent to the condition that the spectrum of f (i.e. the
support of its Fourier transform) is disjoint from (—c, c¢).

The following phenomenon has been known for a long time: if a real function (or
more generally: measure, distribution) has a spectral gap at the origin then it must
have many sign changes. This phenomenon has been deeply studied in the recent
work by Eremenko and Novikov [1]. In [4], it has been established that a similar
phenomenon occurs when the Fourier transform is real analytic in a neighborhood
of the origin but not on the whole real line.

We shall consider the following question: Let #0 be a real Borel measure on R
such that

 d|u|(1)
[oo 1+12<OO’ (3)
and let
M(z)zl/vm, z=x+iyeC\R,
n) o (x— 1) +)2

be its Poisson integral. Assume there are positive constants ¢, 4, g and a constant
0<a<1 such that

M) <A, for =g, z=x+iv. (4)

How many sign changes must the measure u have?

To make this question precise, let us introduce counting functions for the sign
changes of a real measure. Let u be a locally finite real Borel measure on R and let
[a,b) be a finite half-interval. Let J be a partition of [a, b), that is a finite set of points
{x1,x2, ...,%,} such that a<x; <x;<--- <x,<b. Consider the finite sequence

,u([aaxl))a,u([xlaXZ))a '“&:u([xmb))v

and denote by v; the number of its sign changes. We define the number of sign
changes of u on [a,b) as follows:

v([a, b)) = sup vy,
J
where sup is taken over all partitions J of [a,b). Clearly, v(|a,b)) is either a non-

negative integer or + oo, and in the first case the sup is attained. Observe also that
v([a, b)) is a non-decreasing function of [a,b). For 1>0 we set

n (1) = v([0,0),  n(t) = v([=1,1)). (5)
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These functions are non-negative, non-decreasing and integer-valued (in extended
sense).

2. Results

Our approach is based on some ideas of Levin [3, pp. 403—404] and also an idea of
Kahane [2, pp. 76-77].

The following result is due to Levin [3, Appendix II, Theorem 5]: Let uz#0
be a real finite Borel measure on the real line whose spectrum is disjoint from (—c,c).

Then
R
liminf{/ n([)dt—ch}> — 0.
0 t T

R— w

Observe that there is no non-trivial function F satisfying (4) with a>1. This
follows, for example, from the mentioned Theorem 7.6.3 in [5]. We shall consider the
cases o =1 and O<a<1 separately. Our first result extends Levin’s theorem to
measures satisfying (3), and also gives one-sided estimates on the number of sign
changes:

Theorem 1. Let 10 be a real Borel measure on R satisfying (3). If its Poisson integral
satisfies condition (4) with o = 1, then:

A R c
(i) 11Rr11’1£f{/l (t—2+ﬁ>n+(t)dt—glogR}>0;

R 2
(ii) 1iminf{/ ”([>dz—;cR+3logR}>o.
1

R—w t

Corollary. Let u be a real Borel measure on R satisfying (3). If its spectrum is disjoint
from (—c, c), then the assertion of Theorem 1 holds.

This corollary has been announced without proof in [4] and later extended in [1]
(with a bit less precise estimates of the asymptotical behavior of n, and n) for much
more general class of measures (and distributions).

Our next result extends the part (ii) of Theorem 1 to the case a<1:

Theorem 2. Let 1£0 be a real Borel measure on R satisfying (3). If its Poisson integral
satisfies condition (4) with 0<a <1, then

o ([Rat), eT((1+2)/2)
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One may ask if the measures whose Poisson integral satisfies (4) with o<1 must have
many sign changes on both half-lines (—c0,0) and (0, co). Our Example 3 in the
next section shows that the answer is negative for 0 <o <1/2. It means that for these
values of o there is no analogue of the assertion (i) of Theorem 1. However, if
1/2<o<1 then such an estimate is possible:

Theorem 3. Let 10 be a real Borel measure on R satisfying (3). If its Poisson integral
satisfies condition (4) with 1/2<a<1, then

lim inf

R o0 lo;R{/lR (ﬂ%th]Z—;:)”*(’) dt — [sin(n/(2))]"c log R}> — .

3. Sharpness of Theorems 1-3

Example 1 (Sharpness of Theorem 1). Let u be an absolutely continuous measure
with the density sin ¢z. Then a direct calculation shows that

M(z) = (sgny)e P sincx, zeC\R;
ny(t) = (¢/m)t+ 0(1), n(t) =2(c/n)t+ O(1), t— 0.
The following example is similar to the example in [3], p. 410.
Example 2 (Sharpness of Theorems 2 and 3). Let 0<a<1. Set

mz)ﬁ(lki—Z), 0<n<l.

k=1

Standard arguments show that, for 3(re’)>1,

ncos(a(0 — m/2))
sin(an/2)

log | f,,(re)| = < )r“ + O(logr), r— o0, (6)

and (cf. [3, p. 196])

log | f1(+ k%) = (mcot(na/2))k(1 + o(1)), k— 0.

These relations imply that the following representation holds:

1 & 1 1
J% B ;6;(1&#*)(2 — kl/) +f;(_kl/fx)(z + kl/o:))'
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Let us introduce the atomic measure

- 1 1
H, =T E Qiaékl/" +4a5_k1/1).
= AVAD) Ja(=k/)

Evidently,

() =L e

is the Poisson integral of the measure p,.
Since

sgnfl(k*sgnk) = (—1)*sgnk, k= +1,+2, ...,

then
ne(t)=0"+0(1), n(t)=2"+0(1), t—- o0,
and, by (6),

3

<exp[—(m cot(na))|y|" + O(log |y[)],  for [y[>1,

1
14(2)

we see that the inequalities of Theorems 2 and 3 are sharp in the sense of
order. We do not know whether the coefficients of R* and log R are the best
possible.

The following example shows that there exist measures u satisfying (3) and (4) with
0<o<1/2 such that u is positive on a half-line.

Example 3. Let 0<a<1/2 and
— 5 1 z
ga(z) = H “rm .
k=1
Then
w0y _ meosal (7ol >
log |gx(re")] = iy r* 4+ O(logr), r—oo, |3(re")|=1. (7)

and
log g, (—k"*)| = (mcot ma)k(1 4 o(1)), k— oo.
Then
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and

~ L L7 ydu()
3 _/(

9:(2) m) o (x—1)4)?
is the Poisson integral of the measure
=T Z 0 VR
1
k=1 g k /Ot

Evidently, (7) implies

9x(2)

nevertheless, n, (1) = 0.

In the case o« = 1/2 we replace g, with (1 + z) cosh /z.

4. Proof of Theorem 1

We assume that a real measure p satisfies conditions (3) and (4) with « = 1.
The following function analytic in C\R will play an important role:

G(2) :%/_i (tiz_rttz) du(r).

Evidently, it satisfies
G = G)
and
3G(z) = M(z), zeC\R.

Lemma 1. The estimate holds:

ERES!

=l

|G(2)|< 4 zeC\R.

TE o
<exp(=—— >
exp (2 sin(mo/2) "+ 0(logy)> for |y|=1,

223

(Here and further we denote by A a positive constant not necessary the same

everywhere.)

Proof. Clearly, G is a difference of two functions analytic in C\R and having positive
(negative) imaginary part in the upper (lower) half-plane. The assertion of
Lemma 1 follows immediately from the well-known Caratheodory inequality (see,

g [3,p. 18, O
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Lemma 2. The estimate holds:

|G (2)| < eV for |y]>2q. (10)

Proof. By (9) and the Schwarz formula we have

i 2n ; ei() é’
G(Z‘FC):% ; M(z+qe0)gem_g

Differentiating with respect to { and then setting { = 0, we obtain

d0+ RG(z) for |3z|=2q, |{|<gq.

. 2m
G(z) = L M(z+qe)e ™ dO  for |3z|>2q.
q Jo
Hence
G(2)|<> max [M(z+qge)
g 0<0<m ’

and condition (4) with o = 1 implies (10). O
Lemma 3. There exists a real constant D such that the estimate holds:

|G(z) — D|<A4e™ Pl for |y|>2q. (11)
Proof. Let us define, for 3z>0,

H@=[wm0%

where the integral is taken along the vertical line going upwards from z. Using (10), it
is easy to see that the integral is an analytic function in the upper half-plane and
satisfies

|H(z)|<Ae™ P! for |y|=2g4. (12)

For 3z<0 we set H(z) = H(Z). The function H is analytic in the lower half-plane
and satisfies (12). Since [G 4+ H]' = 0, we see that G + H is a constant D, (D_), say,
in the upper (lower) half-plane. Since 3[G + H]|(iy) = [M + 3H|(iy) tends to zero as
|[y| > oo, the constants D, are real. Since R[G + H|(iy) = R[G + H|(—iy), we
conclude that D, =D_. O

Corollary. Function G is not constant.

Proof. Since 3G = M #0, G cannot be a real constant. On the other hand, Lemma 3
shows that G(iy) tends to real constant D as y—oo0. [
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Lemma 4. The support of the measure u is unbounded from right and left.

Proof. Assume, that supp pu=(—o0,d), d< + oo, Noting that

1 t <Z+22+1> 1 (13)

—z 1+ r—z )1+ 22

and using condition (3), we see that

d 2
zZ|7+ 1\ d|u|(z
|G(z)|</_ <|Z|+||t|—z|> 1|+|([2)<A(|z|2+1) for Rz>2d. (14)

o0

This bound and (11) show that the well-known Carlson theorem (see, e.g. [8, Section
5.8]) is applicable to G — D and hence G = D. Nevertheless, 3G = M #0, and we
obtain a contradiction. [

Let us introduce the sequence of atomic measures

o0

'up = Z ﬂ([k27p7 (k + 1)271)))5]{2—/7, p = 1727 ceey

k=—o0

where 0, denotes the unit measure at point a. According to Lemma 3, each measure
1, has support unbounded from right and left. Condition (3) implies

sup /fc d|ﬂp‘(l)< 0. (15)

p=1 0 1+2

Let us define the sequence of meromorphic in C functions

“ 1 t
GP(Z):\/7Cf <t—2m> d,up(t), p:1,2,

Each function G, takes real values on R and its poles are real and simple; the set of
the poles is unbounded from right and left. Note that, for any real constant A,
function G, — A4 has a zero between any two consecutive poles having residues of the
same sign.

The following lemma concerns convergence of the sequence {G,} as p— 0.

Lemma 5. (i) On any compact set K lying entirely in the upper or lower half-plane the
sequence G, tends to G uniformly as p— 0.
(i1) On any compact set in C the following estimate holds:

-1
Gp(2)|< Ay,

where A is independent of z and p.
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Proof. (1) We have
G(z) — Gy(2)

SN AR 1 t A
- - - 1
2 /W (—z KTz 142 1% 27y H

k=—o

0 (k+1)277 t | L2
- _k:z—:oo /kz"’ [/kzp ((u — 2)2 B (1+ u2)2> du‘| du(1).

For z belonging to a fixed compact set lying entirely in the upper or lower half-plane
the following inequality holds:

1
< max
1 +u? uer

A

2
1 14+u < ,
1+ u?

(u—z2) (u—2)°

where A is independent of z and u. Therefore

d
66) - Gl <y [T,

Using (14), we conclude that on the compact set

|G(z) — Gy(2)|<A277 >0 as p— .
(i1) Observe that (13) implies

H+|z|2+l 1
lv| 1+ 72

Hence, for z belonging to a compact set in C,

d
Gl I sl(1)
|yl 147

where A4 is independent of z and p. By condition (14) the integral in the right hand
side is bounded by a constant independent of p. [

1 t
t—z 1+ﬂ

Let #>0 be a number such that G(in) — D#0, where D is the constant from
Lemma 3. Such 5 exists in virtue of corollary to Lemma 3. Set

f(z)=G(z+in)—D, f(z)=Gy(z+in)—D, p=1.2,..

Choose ¢€(0,1) so small that f does not vanish in the closed disc {z: |z|<e&}. By
Lemma 5(i), f, also does not vanish in the disc for all sufficiently large p. Further we
shall consider only such values of p.

Let us start with the proof of assertion (i) of Theorem 1.

Denote by zx, zeros and by (i, poles of f, situated in the right half-plane. We
agree to enumerate (;,, j=1,2,..., in order of increasing real parts. By the
Carleman formula for the right half-plane (see, e.g., [3, p. 224] where it is written for
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the upper half-plane) we have for any R>¢:

> () y (] %)
|zxp| <R kp R? [Cepl <R Ck‘p R

/2 , I AT
_ 19 o - . s
=) log | f,(Re )c0s9d9+2n/£ (2 R2> log | £, (it)f, (~it) dt
1 /2 " e*i@ Sei()

Let us take lim sup as p— c0.
To do this in the right-hand side of (16) we note, by Lemma 5(ii), that the
following inequality holds on any compact set:

log | f,(z)|<log——.
Taking into account Lemma 5(i) and the Fatou lemma, we obtain that
lim sup {the right-hand side of (16)}

poon
<1 o log | f(Re™)| cos 0 dO + : /R L log | f(it)f (—it)| dt
“nR )2 & 2n ), \* R2 &

1 n/2

—i0 i0
L i0y(€ B
+ 2 s iR{logf(se )( . + R2>] do.

Using Lemmas 1 and 3, we conclude that
lim sup{the right-hand side of (16)}

p—> 0

S—%logR—&—O(l), as R— oo. (17)

Let us now estimate from below the left-hand side of (16). Note that the poles {;, of
fp are simple and situated on the line {z: 3z= —5}, and between any two
consecutive poles having residues of the same sign there is at least one zero of f, on
the same line. Let us denote by Q, the set of all poles {;, such that the nearest pole
from the right has residue of opposite sign. If {; , = ; , — in¢ Q,, then there is a zero
Zk(j)p = Xk(j)p — in such that the ‘interlacing condition’ holds

$ip <Xi(j)p <Ejs1p- (18)

Set

o) _ 1 Rzip 1 Rz,
st = Y (woh-Tae) o s (w ),
lzkpl <R P [l <R §ip € Qp 7P

iRL _ gaé/ja[’)

SR = ( & R?
|G| <R & peOp b
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so that the left-hand side of (16) is S@(R) - Sé‘” >(R). Observe that
lim sup {the left-hand side of(16)}

p— 0

=limsup (S (R) — S¥)(R)> limsup S (R) — limsup S (R).  (19)

p—> 0 p— 0 p— 0

Let us first estimate Sgp)(R) from below. To this end we omit all summands which
correspond to the zeros zx, being not z;( ) ,. Then we get

) 1 Ry, 1 R,
sPwz Y (wo TRy S (e
2k jypl <R §ip € Dp () [Gipl <R; Gp ¢ Qp )P

3 ( Xk(j)p _xk<_/>,p> . ( S é,_,,)
2 2 2 2 2 2
ol < 0 0y \k(i)p TN R Gol<RD,e0 \Gp T R

/. J—( L g )0~ 1)

0 2+ R
- (R (AL R
= ; (t2+;12)2 R2 1 2 )

where

bi(t) = #{xu( ot Xk(pp <t GpE Opls  b2(1) = #{Gjp: §p<t, ¢ Opt-
The ‘interlacing condition’ (18) implies that
[b1(1) = ba(1)| < 1.
Thus,
lim sup SY>(R)> —A> — w0, (20)

p—> 0
where A does not depend on R.
Now, let us estimate Sgp )(R) from above. Set

by(t) = #{&,: 0<&,<t, (,€0Q,}, >0.

Then we have

S§”>(R):/0m<ﬁ_%)db3(t)

R2—n2 12 2 1
_ n —
a /0 (([2 +12)? + R2> ba(1) dt

R 1
< 5+ .
< /0 (12 igpe, + R2) b3 (1) dt
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Recall that the residue at pole {;, is u([j277,(j + 1)277)) and the set Q, consists of
poles {; ,, for which the next pole from the right has residue of opposite sign. Hence,
it follows that b3(f)<s; + 1 where s; is the number of sign changes in the sequence

H([Oa 2717))):“([27&2 ’ 27]7))) "'7:“([j27p’ (] + 1)27‘”))7

where j is the greatest integer such that j27 <t. Evidently, s;<n, (), where n, is
defined by (5), and we have

bi(t)<ny (1) + 1.

Hence
, ) VI 1
lim sup S5 (R)é/() <m+ﬁ>(n+(t)+l)dt
po o
Rero1
< : t_2+ﬁ ny(t)dt+ A, (21)

where A does not depend on R (without loss of generality we assume that n (7)< oo
for each >0, otherwise the assertion (i) of Theorem 1 is trivial).

Taking together the inequalities (17), (19), (20) and (21), we obtain the assertion (i)
of Theorem 1.

The proof of assertion (ii) is similar to the proof of (i), but instead of the Carleman
formula we use the Jensen formula.

Let us denote by {zx,} the set of all zeros of f, and by {(; ,} the set of all its poles.
We agree to enumerate (;,, —o0 <j< o0, in order of increasing real parts.

By the Jensen formula,

R

R 1 2n
log = 3 togr =50 [ log | 5(Re) d0—log | f,0)]. (22
6, <R ‘ ./\Pl TJo

|25 p| <R |2k p] 3

Let us take lim sup as p— co.
The same arguments as in the proof of assertion (i) give

lim sup {the right-hand side of (22)}

p— o
1 2n .
<5 [ toglr(Re)] 0~ log|(0)]. (23)
T Jo
Hence, using Lemmas 1 and 3, we get
lim sup{the right-hand side of (22)}< — §R+ O(1), R— 0. (24)
p— 0 Y

To estimate the left-hand side of (22) from below, we denote by Q, the set of all (not
only in the right half-plane as in the proof of assertion (i)) poles (;, such that the
nearest pole from the right has the residue of opposite sign. Then, again, if (;, =
¢jp — in¢ Oy, then there is a zero zi( ), = X( ), — in such that (18) holds.
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Denote
R R
T1<‘”>(R): Z log|Z i~ Z 10g|§ |
gl <R kel g, <R G, 0, i
R
R = Y log—
|Gl

il <R (i peQp
so that the left-hand side of (22) is le(R) — Tz(p)(R) and
lim sup {the left-hand side of (22)}

p— 0

> lim sup Tl(p)(R) — lim sup Tz(”)(R)-

poow po o
Let us estimate Tl(’” ) (R) from below. We have

Tfm (R)= Z log

. AT
Zk( ol <R; §p# Op | k(/),p|

[

T2 e
[ipl<R; (pd Op )P

log d(pi(1) = B2(2))

0 VI +n?
[

0 2+

(B1(2) — Pa(1)) dt

where
B (1) = #{xk(jypt IXa(iypl <t §pEOpls
Ba(t) = #{& 0 |l <t, (¢ 0y} for £>0.
The ‘interlacing condition’ (18) implies that
B1(1) — Bo(1)| <2
Therefore

lim sup T (R)> —2log R.

p—> 0

To estimate 7 2(17 )(R) from above, we set

Bs(1) = #{&p: &pl <t GpE Op}-

Then
/R—ip R /R—ip2 ;
() — _ =
TZ (R) _/0 log \/mdﬂ3(l) _/0 12 ¥ 7’2 ﬁ3( )

(25)

As by estimation of Sép >(R) in the proof of assertion (i), we see that f;(1)<d) + 1

where o—’, is the number of sign changes in the sequence
u((1277, (1+1)277)), o, u((277, (F + 1)27)),
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where / is the smallest integer such that /277> — ¢ and j is the greatest integer such
that j277 <. Since o"l<n(t)7 where n is defined by (5), we obtain f;(¢) <n(¢) + 1 and

V=
lim sup Tz(p)(R)< / (n(t) + 1) dt

p— o 0 £ +n?

R
< / ﬂtt)dtJrlongLA, (27)
1
where A is independent of R.
Joining (22), (24), (25), (26) and (27), we obtain assertion (ii). [

5. Proofs of Theorems 2 and 3

The proof of Theorem 2 is similar to that of Theorem 1. Lemmas 1, 2, 3, 5 and
corollary to Lemma 3 remain in force when we replace |y| with |y|” in the right-hand
sides of (10) and (11).

Lemma 4 remains in force only under additional condition 1/2<a< 1. In this case
it is easy to see that (12) remains in force in the angle {z: |arg(z — 2d)|<n/(20)}.
Taking into account the mentioned change in (11), we see that the function G(w'/* +
2d) satisfies conditions of the Carlson theorem in the half-plane {w: Rw>0}, and we
obtain the desired contradiction. In the general case 0<a<1, the assertion of
Lemma 4 should be replaced by the following: supp ¢ cannot be bounded (from both
sides simultaneously). Indeed, if the support is bounded, then G — D is analytic at oo
and therefore cannot tend to zero faster than some power of 1/|z| without being
constant.

We introduce functions f and f, as in the proof of Theorem 1 and denote by {zx,}
and {{;,} sets of zeros and poles of f,, respectively with the same agreement
concerning enumeration of the latter set (however, if supp p is bounded from
the left (right), then j=1,2,..., (j=--,—-2,—1)). Then we apply the Jensen
formula (22). Evidently, (23) remains in force. Since change of bound in
Lemma 3 we have

I (14 a)/2)

(1) X+ O

1 27! ‘()
_ ! < —
- / log | (Re")| d0 <

Noting that (25), (26), (27) remain in force, we obtain the assertion of
Theorem 2.

The proof of Theorem 3 differs from that of Theorem 1(i) by application
of the Carleman formula for the angle {z: |argz|<=n/(20)} instead of the
right half-plane. We apply this formula to the same function f, and with the
same meaning of notations z,, (;, and & Denoting by A the sector
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{z: |z|<R,|argz| <= /(2x)}, we have

-1 -1
N ] G i w2k S S (Y (R B
o (
Zkp EAR Zkp R™ (peAr Jip R>
o 7/ (20) §
= IR /_ . log | f,(Re")| cos a6 dO
5] —1 | 1™ OV £ (4011 (20| gy
* 30 | (7 log e B 1)
7/ (22) —io) o i)
* i e &g’e
2 R |log fy (") | —— — - ) | 0.
o oxf")(“ - - )|

The rest of the proof differs from that of Theorem 1 only by routine technical details.
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